
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

5

Doubly Linked List

2

Doubly Linked List
 Doubly Linked List is a type of a Linked List.

 Doubly Linked List has pointers to both next node
and previous node.

 Each node has therefore two pointers along with
information parts.

 In Doubly Linked List we can move in a linked list in
both directions.

3

 In the pointer to previous node of the first node
contains NULL and pointer to the Next node of a
last node contains NULL

4

Why we need Doubly Linked List?

5

1. Moving forward in a singly-linked list is easy;
but moving backwards is not.
– If we have a situation in which moving in both

direction is needed, then singly-linked list is not
appropriate.

– To avoid this we can use two pointers in a node:
one to point to next node and another to point to
the previous node:

2. Recall that the deletion of an element at the
Rear or End is not easy because we have to
find the node before the tail (the last node) by
link hopping.

6

 These two pointers help in accessing both the
successor (next) and predecessor (previous)
node for any node within the list.

 Every node in a doubly linked list has at least
three fields:

1. LeftPointer (or previous)
– Pointer to the previous node

2. RightPointer (or next)
– Pointer to the next node

3. DATA.

7

Structure of doubly-linked list

Node creation in doubly-linked list is similar to Singly-Linked List

struct dbLNode
{
dbLNode * prev;
int info;
dbLNode * next;

};

Struct dbLNode * start;

8

Creating linked list: Adding first node

 Suppose Head points to the start of a double
linked list.

Algorithm:

1. Create a new node and save its address in Current
Current  create NewNode

2. Store information. Current  info = data
3. Current next = null
4. Current previous = null
5. Point Head to this first node. Set Head = Current

9

Adding a node at Front of a doubly
linked list

To It Yourself.
Write an algorithm that will add a new node in

the start of a doubly linked list.

 You need to get help from “adding a node at
Front of Singly Linked List algorithm”.

What are the main tasks or checks to do??

10

Adding new nodes in the end
 For this algorithm there must be at least one node in the

doubly linked list.
 Suppose End pointer points to the last node.

1. Create new node and store its address in nNode
2. Store information. nNode info = data
3. Set nNodeprevious = End
4. Set nNodenext = null
5. Set End next = nNode
6. Advance End to the new node. End = nNode

11

Write an algorithm for adding node in the end of
a doubly linked list in situation where we do not
have any pointer pointing to the last node.
– How would you add a node in the end?
– What steps are needed?

– You need to assign a Temp pointer to the start
– Then traverse the pointer till the end till temp->

next is equal to the null.

12

Adding a node next to a specific node
 Suppose Current points to a node and you want to

add a new node to its right

 That is, adding node in the middle of a linked list.

13

14

 Suppose Current points to the current node, to the right of
which a new node will be added. For this algorithm there
must be at least one node in the doubly linked list.

1. Create new node and store its address in nNode
2. Store information. nNode info = data
3. Set nNode previous to Current
4. Set nNode  next to Currentnext
5. Set Temp to Currentnext
6. Set Tempprevious to nNode
7. Set Current next to nNode

The order in which pointers are reorganized or
assigned is important.

15

Delete First Node
 Suppose Start points to the first node

1. Set Current to the Start. Current  Start
2. Advance Start pointer. Start = Start  next
3. Delete Current. Free(Current)
4. Startprevious = Null

16

Delete a middle node in a double linked list
 Delete a middle node pointed by Current
 p and q are temporary pointers.

1. Save and process information in Current node
2. q = Current prev
3. p = Currentnext
4. q next = p
5. pprev = q
6. Delete Current

Test this algorithm on paper.

17

Delete node in the end of a doubly linked list
 Suppose Last points to the last node to be

deleted. Temp is a temporary pointer.

1. Set Temp to last node: Temp= Last
2. Set Last to the second last node:

Last = Tempprevious
3. Update the Next of the new last node to null

Lastnext = Null
4. Free(Temp)

Test this algorithm on paper.
18

 How to make one function to add a node at the
beginning, middle or at the end of the doubly
linked list?
– How will you determine if a node is the first

node or not?
– How will you determine if the a node is being

added to the end?

19

Algorithm for Forward Traversal

1. Set Current = First
2. Repeat Step 3 and 4 While Current != Null
3. Process Information, print Currentdata
4. Advance Current, Current = CurrentNext
5. Finish

20

Algorithm for Backward Traversal

1. Set Current = Last
2. Repeat Step 3 and 4, While Current != Null
3. Process Information, print Currentdata
4. Move back Current,

Current = CurrentPrevious
5. Finish

21

	Slide Number 1
	Doubly Linked List
	Doubly Linked List
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Structure of doubly-linked list
	Creating linked list: Adding first node
	Adding a node at Front of a doubly linked list
	Adding new nodes in the end
	Slide Number 12
	Adding a node next to a specific node
	Slide Number 14
	Slide Number 15
	Delete First Node
	Delete a middle node in a double linked list
	Delete node in the end of a doubly linked list
	Slide Number 19
	Algorithm for Forward Traversal
	Algorithm for Backward Traversal

